2,847 research outputs found

    Pilot Decontamination Through Pilot Sequence Hopping in Massive MIMO Systems

    Get PDF
    This work concerns wireless cellular networks applying massive multiple-input multiple-output (MIMO) technology. In such a system, the base station in a given cell is equipped with a very large number (hundreds or even thousands) of antennas and serves multiple users. Estimation of the channel from the base station to each user is performed at the base station using an uplink pilot sequence. Such a channel estimation procedure suffers from pilot contamination. Orthogonal pilot sequences are used in a given cell but, due to the shortage of orthogonal sequences, the same pilot sequences must be reused in neighboring cells, causing pilot contamination. The solution presented in this paper suppresses pilot contamination, without the need for coordination among cells. Pilot sequence hopping is performed at each transmission slot, which provides a randomization of the pilot contamination. Using a modified Kalman filter, it is shown that such randomized contamination can be significantly suppressed. Comparisons with conventional estimation methods show that the mean squared error can be lowered as much as an order of magnitude at low mobility

    Massive MIMO for Crowd Scenarios: A Solution Based on Random Access

    Get PDF
    This paper presents a new approach to intra-cell pilot contamination in crowded massive MIMO scenarios. The approach relies on two essential properties of a massive MIMO system, namely near-orthogonality between user channels and near-stability of channel powers. Signal processing techniques that take advantage of these properties allow us to view a set of contaminated pilot signals as a graph code on which iterative belief propagation can be performed. This makes it possible to decontaminate pilot signals and increase the throughput of the system. The proposed solution exhibits high performance with large improvements over the conventional method. The improvements come at the price of an increased error rate, although this effect is shown to decrease significantly for increasing number of antennas at the base station

    Towards Very Large Aperture Massive MIMO: a measurement based study

    Get PDF
    Massive MIMO is a new technique for wireless communications that claims to offer very high system throughput and energy efficiency in multi-user scenarios. The cost is to add a very large number of antennas at the base station. Theoretical research has probed these benefits, but very few measurements have showed the potential of Massive MIMO in practice. We investigate the properties of measured Massive MIMO channels in a large indoor venue. We describe a measurement campaign using 3 arrays having different shape and aperture, with 64 antennas and 8 users with 2 antennas each. We focus on the impact of the array aperture which is the main limiting factor in the degrees of freedom available in the multiple antenna channel. We find that performance is improved as the aperture increases, with an impact mostly visible in crowded scenarios where the users are closely spaced. We also test MIMO capability within a same user device with user proximity effect. We see a good channel resolvability with confirmation of the strong effect of the user hand grip. At last, we highlight that propagation conditions where line-of-sight is dominant can be favorable

    Random Access for Massive MIMO Systems with Intra-Cell Pilot Contamination

    Full text link
    Massive MIMO systems, where the base stations are equipped with hundreds of antenna elements, are an attractive way to attain unprecedented spectral efficiency in future wireless networks. In the "classical" massive MIMO setting, the terminals are assumed fully loaded and a main impairment to the performance comes from the inter-cell pilot contamination, i.e., interference from terminals in neighboring cells using the same pilots as in the home cell. However, when the terminals are active intermittently, it is viable to avoid inter-cell contamination by pre-allocation of pilots, while same-cell terminals use random access to select the allocated pilot sequences. This leads to the problem of intra-cell pilot contamination. We propose a framework for random access in massive MIMO networks and derive new uplink sum rate expressions that take intra-cell pilot collisions, intermittent terminal activity, and interference into account. We use these expressions to optimize the terminal activation probability and pilot length

    Design and Performance Analysis of Non-Coherent Detection Systems with Massive Receiver Arrays

    Full text link
    Harvesting the gain of a large number of antennas in a mmWave band has mainly been relying on the costly operation of channel state information (CSI) acquisition and cumbersome phase shifters. Recent works have started to investigate the possibility to use receivers based on energy detection (ED), where a single data stream is decoded based on the channel and noise energy. The asymptotic features of the massive receiver array lead to a system where the impact of the noise becomes predictable due to a noise hardening effect. This in effect extends the communication range compared to the receiver with a small number of antennas, as the latter is limited by the unpredictability of the additive noise. When the channel has a large number of spatial degrees of freedom, the system becomes robust to imperfect channel knowledge due to channel hardening. We propose two detection methods based on the instantaneous and average channel energy, respectively. Meanwhile, we design the detection thresholds based on the asymptotic properties of the received energy. Differently from existing works, we analyze the scaling law behavior of the symbol-error-rate (SER). When the instantaneous channel energy is known, the performance of ED approaches that of the coherent detection in high SNR scenarios. When the receiver relies on the average channel energy, our performance analysis is based on the exact SER, rather than an approximation. It is shown that the logarithm of SER decreases linearly as a function of the number of antennas. Additionally, a saturation appears at high SNR for PAM constellations of order larger than two, due to the uncertainty on the channel energy. Simulation results show that ED, with a much lower complexity, achieves promising performance both in Rayleigh fading channels and in sparse channels

    Massive MIMO for Ultra-reliable Communications with Constellations for Dual Coherent-noncoherent Detection

    Full text link
    The stringent requirements of ultra-reliable low-latency communications (URLLC) require rethinking of the physical layer transmission techniques. Massive antenna arrays are seen as an enabler of the emerging 5th5^\text{th} generation systems, due to increases in spectral efficiency and degrees of freedom for transmissions, which can greatly improve reliability under demanding latency requirements. Massive array coherent processing relies on accurate channel state information (CSI) in order to achieve high reliability. In this paper, we investigate the impact of imperfect CSI in a single-input multiple-output (SIMO) system on the coherent receiver. An amplitude-phase keying (APK) symbol constellation is proposed, where each two symmetric symbols reside on distinct power levels. The symbols are demodulated using a dual-stage non-coherent and coherent detection strategy, in order to improve symbol reliability. By means of analysis and simulation, we find an adequate scaling of the constellation and show that for high signal-to-noise ratio (SNR) and inaccurate CSI regime, the proposed scheme enhances receiver performance.Comment: Accepted at WSA 2018, special session on "Massive MIMO for mobile broadband communications and new 5G services

    Random Access Protocol for Massive MIMO: Strongest-User Collision Resolution (SUCR)

    Full text link
    Wireless networks with many antennas at the base stations and multiplexing of many users, known as Massive MIMO systems, are key to handle the rapid growth of data traffic. As the number of users increases, the random access in contemporary networks will be flooded by user collisions. In this paper, we propose a reengineered random access protocol, coined strongest-user collision resolution (SUCR). It exploits the channel hardening feature of Massive MIMO channels to enable each user to detect collisions, determine how strong the contenders' channels are, and only keep transmitting if it has the strongest channel gain. The proposed SUCR protocol can quickly and distributively resolve the vast majority of all pilot collisions.Comment: Published at the IEEE International Conference on Communications (ICC), 2016, 6 pages, 6 figures. (c) 2016 IEEE. Personal use of this material is permitte
    • …
    corecore